
Erika Schwartz, MDa,*, Kent Holtorf, MDb

KEYWORDS
- Hormone replacement
- Estrogen
- Progesterone
- Testosterone
- Thyroid hormone
- Bioidentical hormones

Geriatric medicine historically has been the domain of sick, frail, old, and aging populations of patients. Therapies for aging patients focus primarily on prolonging life, often at very high emotional and financial cost with little focus on the quality of life the patient experiences. As the proportion of aging people continues to rise, reducing the burden of age-related conditions becomes increasingly important in geriatric care. In addition, as the life expectancy of the population increases, years of disability follow unless comprehensive prevention and treatment of age-related diseases and frailty are addressed.

With the transition of the baby boomers into the geriatric population, a significant movement away from the disease-centric model and toward prevention and wellness maintenance and enhancement is taking place. The goal of this article is to present an up-to-date review of the literature on hormone augmentation in the elderly to help primary care physicians better evaluate and utilize hormone replacement and optimization strategies to benefit their patients. The scientific literature suggests that hormone supplementation with estrogen, progesterone, testosterone, growth hormone, and

a Age Management Institute, 200 West 57 Street, Suite 502, New York, NY 10019, USA
b Holtorf Medical Group, 23456 Hawthorne Boulevard, Suite 160, Torrance, CA 90505, USA
* Corresponding author.
E-mail address: Eschwartz@agemd.org

0749-0690/11/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
thyroid hormone has the potential to improve quality of life and to prevent, or reverse, the many symptoms and conditions associated with aging, including fatigue, depression, weight gain, frailty, osteoporosis, loss of libido, and heart disease. Much hesitation surrounds the possible long-term side effects of hormone therapies, including the potential increased risk of cancers. When attempting to find the ideal balance for the individual patient, physicians should be concerned not only with improving their patients’ life spans, but also their health spans—the duration of time a person experiences a high-quality, vigorous, and enjoyable life. Toward that end, this article hopes to help clarify the often confusing area of anti-aging medicine. We believe, if properly examined, the literature in this area can provide much help and support to the aging patient.

ESTROGEN AND PROGESTERONE

By the year 2025, there will be 1.1 billion women older than the age of 50 in the world.1 The magnitude and significance of this number must be addressed from the perspective of the primary care practitioner who is now faced with an exploding number of aging women seeking to maintain, and even improve, their health. In these authors’ opinions, women who are menopausal and postmenopausal should no longer accept a pat on the back and an antidepressant as a best therapy for postmenopausal symptoms often caused by aging and its attendant loss of hormones. We as physicians need to expand our knowledge and expertise to be able to provide aging women with safe and effective approaches to aging—to provide them with sound information to help them make the best decisions for their individual situation.

The Women’s Health Initiative

The widely accepted “gold standard” information on estrogen and progestogens in menopausal women stems overwhelmingly from the Women’s Health Initiative (WHI).2 This large-scale (>16,000 women) placebo-controlled study that started in 1991 evaluated the long-term effects of conjugated equine estrogens alone or in conjunction with medroxyprogesterone acetate (MPA) versus placebo. The study aimed to prove that Premarin (brand name for conjugated equine estrogens) and Provera (brand name for medroxyprogesterone acetate) would protect aging women from heart disease (the number one killer of menopausal and postmenopausal women), osteoporosis, and Alzheimer’s disease.

The study was planned for 8.5 years but was abruptly halted 3 years before its projected termination in July of 2002 owing to a significant increase in statistical relative risk of breast cancer (1.4), myocardial infarctions, and cerebrovascular accident in the group taking active hormones.2 The abrupt termination of the study was a very public affair, resulting in discontinuation of hormone replacement therapy (HRT) in millions of women by physicians who became fearful of using any type of hormone therapy. Due consideration was given to potential harm to the patient, possible legal ramifications, and general lack of educational support for continuation of hormone therapies in general.

The results of the study have been reviewed and reevaluated over more than 10 years. A major criticism has been that the women in the study were, on average, more than 10 years post-menopause, averaging 63 years of age at the initiation of therapy, which is usually considered old for women to start on hormone replacement, and had preexisting conditions that negatively affected outcome.3 As recently as October 2010, further analysis of the WHI study determined that long-term (11 years) use of
conjugated estrogens and MPA is associated with more aggressive and deadlier breast cancers in the women who took the drugs.4

At the same time, another long-term survey in the United Kingdom, The Million Women Study, found that women started on a combination therapy of estrogen and progestin immediately post-menopause were also at higher risk of breast cancer than those who started the hormone therapies more than 5 years after menopause.5

Current users (but not past users) of HRT were found to be at increased risk of breast cancer, and the risk increased with increasing length of use. The implications of this survey are quite serious but have been strongly criticized because of possibly significant selection bias. The women in this survey were enrolled in the study only when they presented for routine mammography.6 The bias exists because women going in for mammograms are not representative of the general population because they may be more likely to be part of specific socioeconomic strata and geographic locations, have concerns about breast cancer, and may have increased risk factors (eg, previous lumps, family or genetic history).

A follow-up of more than 1 million women in the Million Women Study 7 years after the initial survey found that women using an ongoing combination of estrogen and synthetic progestin were more likely to develop breast cancer than those who were not using HRT.7

The effects were similar for all types and doses of estrogen and progestagen; for oral, transdermal, and implanted HRT; and for continuous and sequential patterns of use. Current users of estrogen–progestagen HRT had a 2.0 increased risk of developing breast cancer and current users of estrogen-only HRT had a 1.3 risk. In the United Kingdom, use of HRT by women aged 50 to 64 years who had mammograms in the decade from 1993 to 2003 resulted in an estimated 20,000 extra breast cancer cases.7

Making a Decision

Until recently, no distinction has been made between bioidentical and synthetic hormones, thus leaving a deficit in the public and physicians’ knowledge and understanding of hormones in general.4 With the lack of distinction between types of hormones, we have been left with treatment recommendations based solely on the information obtained from studies on synthetic hormones. This has led to recommendations of continued, but shorter-term, use of synthetic hormone replacement combinations.2,8 According to an article on the American College of Obstetricians and Gynecologists (ACOG) website: “Again, there are no good studies to tell us precisely what constitutes safe short-term use. In the past, hormone therapy of five years or less was believed to be associated with little or no risk. However, the WHI study2 found an increase in the incidence of blood clots and stroke during the first year of use, and a rise in the diagnosis of breast cancer after four years, suggesting that even the first four years of use may not be risk-free (Million Women Study). The estrogen-only arm of the WHI study did not show an increased risk for breast cancer after nearly seven years, but did find similar small increases in blood clots and stroke after just one or two years’ use.”

Current Recommendations

The patient, working with a well-informed physician, should decide whether the benefits of using synthetic hormone replacement for relief of menopause symptoms are worth the risks that have been identified. Starting with a thorough medical evaluation and working with the patient to educate her as much as possible about the available options in hormone formulations, the physician can provide much needed
support for menopausal and postmenopausal patients. As physicians become better informed about the available options of hormone therapies, the choices patients make will become truly informed and ultimately tailored to their individual needs.

If patients choose HRT, the US Preventive Services Task Force recommends that they use the smallest effective dose for the shortest possible time and that the patient see her doctor at least once a year to discuss whether she should stop and what new information may be available that might influence the patient’s decision to stop or continue using hormones.9 (An important note: As research continues, recommendations may change.) Of course, the patient may wish to continue regular breast cancer screenings, including annual physician breast exams and periodic mammograms. (ACOG recommends mammograms every 1–2 years during the 40s, and annually thereafter while the US Preventative Services Task Force recommends testing every 2 years starting only at the age of 50.)

As with most issues concerning health, the decision to use hormones is a personal one that ultimately must be made by the patient. It is the physician’s role to help the patient make sure the decision is a well informed one with which the patient feels comfortable. The more knowledgeable and informed the physician is regarding the different types of hormone therapies available and the evidence supporting them, the more information he or she can provide for the patient. Before making a decision about HRT, women should consult with their physicians for individualized advice that takes into account types of hormone therapies available, recommendations of medical societies and governmental agencies, personal needs, and medical and family history.2,10,11

To help physicians better understand the state of the information as it relates to WHI and the conjugated equine estrogens and MPA, the findings of the WHI are recapped here. The results of the WHI indicated that if 10,000 women were given 0.625 mg of conjugated estrogen and 2.5 mg of medroxyprogesterone and followed for 5 years, there would be eight additional cases of breast cancer, seven additional coronary events, eight additional strokes, and eight additional cases of pulmonary embolism than in those women not receiving HRT. The major question, however, is: Would the results be different if different forms (synthetic vs. bioidentical) of HRT were used?

BIOIDENTICAL HORMONES

The WHI study did not evaluate other types of HRT; specifically, bioidentical or natural hormones. These are a class of hormones including estradiol, progesterone, and testosterone that are pharmaceutically indistinguishable from the same hormones naturally produced by the human body (as opposed to equine estrogens, which are the source of conjugated estrogens and are not a natural hormone combination for humans). Bioidentical or natural hormones have been used for decades in Europe and since the 1990s in the United States.12–30

Bioidentical Versus Synthetic

The molecular differences between bioidentical and nonhuman identical hormone preparations31 are illustrated in Fig. 1.

State of the Evidence of Various Hormone Preparations in Women

The differences in action between conjugated equine estrogens, synthetic progestins, and bioidentical hormones have been described and studied extensively in the scientific literature over a period of 40 years.32–35 Early small studies in the 1970s and
1980s suggested the safety of bioidentical hormones, although the studies were too small to reach statistical significance.

As early as 1975, the safety of bioidentical estradiol appeared in the conventional medical literature. Studies and reports of increased risk of endometrial and breast carcinoma among users of synthetic conjugated estrogens (the type of hormone preparations studied by the WHI) also appeared in the scientific literature in the 1970s. By January 1978, the *Journal of the American Geriatrics Society* addressed the growing concern that treatment with exogenous synthetic estrogen could cause cancer and recommended the addition of a synthetically manufactured progestogen as a working solution. Adding small doses of a progestogen (MPA) to either estradiol or conjugated estrogen (CEE) in a cycled manner was determined to be a safe solution to the carcinogenicity concern associated with the use of conjugated estrogens. It is noteworthy that in 1983, the options for treatment
studied and reported in the major medical journals included both the bioidentical 17-beta estradiol along with conjugated (synthetic) estrogens and MPA.39,41

An article in the \textit{British Medical Journal} in March 1980 by Whitehead and Townsend stated that bioidentical “oral progesterone \textit{may be} of value when synthetic progestogens have caused adverse symptoms that necessitate stopping treatment.” Such symptoms include acne, breast tenderness, depression, hypertension, and adverse changes in high-density lipoprotein cholesterol. In the article, no such side effects were reported with the use of bioidentical progesterone. “Naturally occurring progesterone may not alter blood lipids and it is stable for two years and cheaper . . . and useful in treating menopause.”41(p827)

In the 1980s and early 1990s, research scientists expressed concern that (synthetic) MPA used in hormone therapy could increase the risk of breast cancer.42,43 At the same time, the literature contained reports of numerous small in vitro and in vivo studies hinting at the possibility of greater safety with the use of bioidentical/“natural” hormones.19–22,32–35,38,44–49 These studies show that replacing a synthetic progestin with bioidentical progesterone results in improved efficacy, fewer side effects, improved quality of life, and greater patient satisfaction.50–54

For instance, Fitzpatrick and colleagues compared patient satisfaction and quality of life, as well as anxiety, depression, sleep problems, menstrual bleeding, vasomotor symptoms, cognitive difficulties, attractiveness to others, and sexual functioning in 176 menopausal women on HRT.50 In this cross-sectional study, all women were currently on bioidentical progesterone HRT (micronized progesterone for 1–6 months) and previously had been on synthetic HRT (MPA). Patient telephone surveys found significant differences in all psychological, somatic, and vasomotor symptoms, except for attraction, when the use of bioidentical progesterone was compared to synthetic MPA (\(P<.001\)). Compared to MPA, bioidentical progesterone was associated with a 30% reduction in sleep problems, 50% reduction in anxiety, 60% reduction in depression, 30% reduction in somatic symptoms, 25% reduction in menstrual bleeding, 40% reduction in cognitive difficulties, and 30% improvement in sexual function. Overall, 65% of women thought that HRT consisting of estrogens combined with bioidentical progesterone was better than HRT consisting of estrogen combined with synthetic MPA.50 Such cross-sectional data are far from conclusive, but do point out the perception of improved results among women taking natural hormones. The risk of breast cancer and heart disease could not be addressed in this telephone survey.

\textbf{RISKS AND BENEFITS}

\textit{Physiologic Effects: Bioidentical Progesterone Versus Synthetic Progestins}

Scientific reviews of the pharmacology and action of progestins55–61 demonstrate that all progestins and progestogens are not equal. Their actions vary significantly according to their molecular structures.45,55–60,62–88 Although bioidentical progestosterone and synthetic progestins have similar effects on endometrial tissue, they have contrasting effects on breast tissue.

\textit{Breast Cancer: Bioidentical Progesterone Versus Synthetic Progestins}

Synthetic progestins are shown, in vitro, to increase estrogen-stimulated breast cell mitotic activity and proliferation,56,62–75 which increases the risk of breast cancer.

In contrast, bioidentical progesterone has an opposite effect on in vitro breast tissue, inhibiting estrogen-stimulated breast epithelial cells56–58,71–79 down-regulating estrogen receptors in the breast,58,59,78 and diminishing breast cell mitotic activity.45,56,58,62,76–81
The demonstration of increased risk of breast cancer with the use of the synthetic progestin MPA in the WHI study was not surprising because, despite significant variability in the design, significance, and size of previous studies, synthetic progestins have consistently been associated with increased risk of breast cancer.2,3,5,25,27,55,61–63,89–111

In contrast, the use of bioidentical progesterone has shown no association with increased risk of breast cancer; in fact, it repeatedly has been proven to decrease its risk.45,57,76,112–121 However, until recently, no large-scale randomized trials had been conducted with bioidetical hormones establishing beyond doubt that bioidenticals posed no increased risk of cancer.

Large-Scale Studies Inclusive of Bioidentical Hormones

Large-scale studies26,89,121,122 have been conducted in Europe, where bioidentical HRT is the main type of hormone therapy in menopausal women. The most significant study is the E3N or Epic cohort study that followed 80,000 postmenopausal women on various types of hormones including bioidentical hormones for more than 8 years, with 56,666 having used some form of HRT and 23,723 having never used any form of HRT.

The results demonstrated there was no significant increased risk of breast cancer in those who used estrogen-only therapy (98.7% used bioidentical estradiol and only 1.3% used conjugated equine estrogen), but the use of a synthetic progestin increased the risk to 1.69 times that of control subjects \((P = .01) \).26

To evaluate the risk of breast cancer associated with the combination of (bioiden
tical) estradiol and progesterone, the most commonly prescribed hormone combina

tion in France, De Ligniere led a study of a cohort including 3175 postmenopausal women followed for a mean of 8.9 years (28,367 women/year).122 Eighty-three percent of the participating women were receiving exclusively or primarily a combination of transdermal (bioidentical) estradiol gel and progesterone. About 105 cases of breast cancer occurred during the follow-up period, corresponding to a mean of 37 new cases per 10,000 women per year. Using multivariate analysis the authors were unable to detect an increase in the relative risk (RR) of breast cancer (RR 0.98, 95% confidence interval [CI]; 0.65–1.5) in the HRT users. The authors concluded that their results, “do not justify early interruption of such type of HRT, which is beneficial for quality of life, prevention of bone loss and cardiovascular risk profile, without the activation of coagulation and inflammatory protein synthesis measured in users of oral estrogens.”122(p339)

An analysis by Fournier and colleagues of more than 50,000 postmenopausal women followed for an average of 5.8 years found the use of a synthetic progestin associated with a significantly increased risk of breast cancer (RR = 1.4) whereas the use of bioidentical progesterone was associated with a decreased risk of breast cancer (RR = 0.9) \((P = .001) \) over the same study period.89

In a final corroborating study, Bakken and colleagues investigated the relationship between various forms of HRT and cancer in more than 30,000 Norwegian women in a 7- to 12-year retrospective study.123 In this study, the use of (synthetic) estrogen-only HRT (1542 women) did increase the risk of breast cancer compared with that in nonusers (RR = 1.8). Interestingly, the risk was eliminated if the HRT was used for more than 5 years. Those who used a synthetic progestin (7714 women) had a 2.5-fold increased breast cancer risk (RR = 2.5) that increased with increasing duration of use (RR = 2.8 with >5 years of use). The use of preparations that contained the bioidentical estrogen estriol (592 women) was not associated with an increased risk of breast cancer compared to those who never used HRT (RR = −1.0).
Because the risks of synthetic progestins are now well established, further comparison studies between synthetic and bioidenticals would be unethical. Future research should be focused on bioidentical hormones versus placebo.

Cardiovascular: Bioidentical Progesterone Versus Synthetic Progestins

The only long-term study on myocardial infarction (MI) and stroke to date is the WHI, which did not address the effects of bioidentical hormones on cardiovascular events. In contrast, numerous studies including the WHI have found the use of a synthetic progestin will result in an increase in cardiovascular risk factors, including worsening of lipid profiles, prevention of normal vasodilation and promotion of coronary artery vasospasm, increasing hypercoagulability, worsening insulin resistance, and promotion of cardiovascular plaque formation.

In addition, synthetic progestin is proven to increase the actual incidence of myocardial infarction and stroke. Conversely, bioidentical progesterone has been shown not to have negative effects on the aforementioned cardiac risk factors in the short term in small studies. Unfortunately, these studies cannot be compared in scope and duration to the WHI study, leaving the question of whether bioidentical progesterone can actually protect from myocardial infarction or stroke in need of a more definitive answer.

Cardiovascular Risk and Estrogen

The WHI Estrogen Alone trial differed from the better known WHI trial of estrogen plus progestin in that it enrolled women who did not have a uterus and did not need the progestin hormone supplementation to protect their endometrium from the well documented negative effects of conjugated equine estrogens. In the Estrogen Alone trial, 10,739 women with prior hysterectomy, aged 50 to 79 years, were assigned to take conjugated estrogens (Premarin) 0.625 mg daily or to placebo. The study was stopped ahead of schedule in February 2004 by the National Institutes of Health (NIH) because of increased stroke risk and a possible but not categorical increase incidence of myocardial infarction during the 7 years of follow-up. In addition, the conjugated estrogen studied in this arm of the WHI study did not prove to offer any overall protection against heart attack or coronary death in the hormone therapies studied.

In conclusion, our extensive review of the literature finds that all hormones are not equal. Bioidentical and synthetic hormones have differing and often opposite effects. This is important because physicians are often exposed to confusing information about hormone replacement in general and have to help patients make safe and intelligent individual decisions.

Bioidentical hormones have been associated with patient satisfaction, symptom relief, improved cardiovascular risk factors, and reduced risk of breast cancer compared to their synthetic counterparts. Although more randomized control trials are needed to cement and clarify further the extent of the differences between bioidentical and synthetic hormones, the present authors believe that the current state of the evidence demonstrates that bioidentical hormones should be the preferred method of therapy when HRT is chosen. Further, physicians must become familiar and comfortable with the differences in the preparations of hormones available and adapt their prescribing practices accordingly.

TESTOSTERONE FOR WOMEN

Testosterone production in women derives from three sources: the ovaries, the adrenal glands, and from peripheral conversion from other circulating androgens.
Testosterone levels decrease with age, with levels in the fifth decade averaging about half of the level seen in women in their third decade. This decline is due to a combination of factors: androgen production from the adrenal glands progressively declines with age and, although testosterone production from the ovaries remains relatively intact after menopause, the adrenal secretion of androstenedione declines by 50%. The lower androstenedione levels result in a significant reduction in the peripheral conversion to testosterone at menopause. In addition, women who have undergone bilateral oophorectomy experience a 50% further reduction in testosterone levels.

Signs and symptoms of androgen insufficiency include loss of libido, fatigue, reduced sense of well-being, decreased lean body mass, and reduced bone density.

Most commercial assays for the measurement of free and total testosterone levels were developed to measure the much higher levels in men. Consequently, assays in general lack the sensitivity and precision required to measure the normal low levels seen in women. Thus there is no real basis for most of the reference ranges used for testosterone measurements in women. Also, serum levels have not been found to correlate with the presence or absence of symptoms (normal levels do not mean testosterone replacement will not be effective). Thus, if a normal testosterone level is found, it should not be used to rule out a deficiency in women or become the sole determinant when making the decision to treat or trying to make the connection between testosterone levels and symptomatology.

Although there is currently no FDA-approved testosterone preparation for the treatment of “testosterone insufficiency” in women, androgen replacement has been used off-label for more than 70 years. Testosterone therapy in postmenopausal women has been shown to improve sexual desire and responsiveness, sense of well-being, and body composition and to increase bone density. All the studies reviewed in the preceding text are small with statistically significant results. However, more randomized control trials need to be performed to determine efficacy, optimal dosing, and risks.

Risks of Testosterone Treatment in Women

Several side effects are potentially associated with testosterone therapy in women, including potential adverse effects on the cardiovascular system, hirsutism, acne, and breast cancer. The main concern with testosterone replacement in women is its potential negative effect on lipids. The use of testosterone has been shown in some studies to have significant adverse effect on lipid levels. The findings include slight lowering of high-density lipoprotein but no appreciable effect on low-density lipoprotein. Unwanted cosmetic effects, such as acne and hirsutism, are possible side effects associated with large doses of testosterone supplementation, especially in women with a history of such problems. If testosterone is given at an appropriate dose and closely monitored, these side effects tend to be minimal and resolve with a reduction in dose or discontinuation of therapy.
Treatment

Because, as stated previously, free or total testosterone levels do not accurately reflect deficiency states in women, the decision to initiate replacement therapy should be based on a case-by-case evaluation of symptoms and signs rather than laboratory assessments alone. Replacement may be initiated after ruling out other potential causes (eg, hypothyroidism, chronic illness, other hormone deficiency, adrenal syndrome) for the symptoms (eg, fatigue, loss of libido). Testosterone should be used with caution in patients with a history of hirsutism, hair loss, and acne, and in those with untreated estrogen deficiency because they may be more prone to side effects with the use of testosterone alone.

In our opinion, it is reasonable to initiate a therapeutic trial of testosterone for 3 months in those considered to be good candidates. Effective dosing can range from 0.5 mg to 1.0 mg per day given sublingually or via a transdermal gel or cream. Oral testosterone absorption may be erratic and should not be entertained. Intramuscular and subcutaneous pellets are also available, but research findings on their effectiveness and safety are lacking and thus we do not recommend their usage based on the present state of the evidence.

SUMMARY

In summary, based on the literature reviewed and the state of the evidence in our clinical experiences that span decades and include tens of thousands of women, the authors believe that aging women should not be deprived of hormone therapies based on the findings of the WHI.

Many studies and practical clinical experience demonstrate on an ongoing basis the safety and efficacy of bioidentical hormones and supplemental testosterone therapies for improved well-being, elimination of symptoms of menopause, and even prevention of chronic conditions such as osteoporosis, hyperlipidemia, clotting disorders, and atherosclerosis.

More studies are needed to evaluate and further clarify the specific differences between bioidentical and synthetic hormones but ethical reasons prevent researchers from undertaking these studies given the results of the WHI and the many other study results on synthetic hormones. As such, we recommend studies be undertaken that evaluate the effects of bioidentical hormones and testosterone versus placebo.

Until such studies are completed, we also recommend the individual physician become well versed in the scientific literature presented in this article and work with each patient individually to provide her with the best possible care.

REFERENCES

protein composition in relation to oral versus percutaneous administration alone or in
cyclic association with utrogestan in menopausal women. J Clin Endocrinol Metab
and transdermal estradiol in postmenopausal women. Gastroenterology 1991;100:
482–8.
50. Fitzpatrick LA, Pace C, Wiita B. Comparison of regimens containing oral micronized
progesterone of medroxyprogesterone acetate on quality of life in postmenopausal
women: a cross-sectional survey. J Womens Health Gend Based Med 2000;9:
381–7.
51. Cummings JA, Brizendine L. Comparison of physical and emotional side effects of
progesterone or medroxyprogesterone in early postmenopausal women. Meno-
52. Lindenfeld EA, Langer RD. Bleeding patterns of the hormone replacement therapies
in the postmenopausal estrogen and progestin interventions trial. Obstet Gynecol
2002;100(5 Pt 1):853–63.
53. Greendale GA, Reboussin BA, Hogan P, et al. Symptom relief and side effects of
postmenopausal hormones: results from the Postmenopausal Estrogen/Progestin
therapy with continuous daily oral micronized progesterone. Obstet Gynecol 1989;
73:606–12.
55. Holtorf K. The bioidentical hormone debate: Are bioidentical hormones (estradiol,
estriol, and progesterone) safer or more efficacious than commonly used synthetic
56. Wood CE, Register TC, Lees CJ, et al. Effects of estradiol with micronized proges-
terone or medroxyprogesterone acetate on risk markers for breast cancer in post-
estrogen induced mammary carcinogenesis in ovariectomized W/Fu rats. Jpn J
58. Malet C, Spritzer P, Guillaumin D, et al. Progesterone effect on cell growth, ultra-
structural aspect and estradiol receptors of normal breast epithelial (HBE) cells in
content in breast epithelial cells from healthy women during the menstrual cycle. Am
60. Formby B, Wiley TS. Progesterone inhibits growth and induces apoptosis in breast
61. Warren MP. A comparative review of the risks and benefits of hormone replacement
62. de Lignières B. Effects of progestogens on the postmenopausal breast. Climacteric
hormone replacement therapy and the risk of breast cancer. J Steroid Biochem Mol
64. Ory K, Lebeau J, Levalois C, et al. Apoptosis inhibition mediated by medroxypro-
gesterone acetate treatment of breast cancer cell lines. Breast Cancer Res Treat

Menopause and the hormone controversy: Clarification or confusion?

Abstract: Hormone therapy in perimenopause and menopause remains a controversial and often confusing management strategy for healthcare providers. To assist in providing women quality healthcare, recently published new guidelines help provide direction for NPs.

By Jane H. Kass-Wolff, PhD, FNP-BC, WHNP-BC, and Jennifer E. Fisher, DNP, WHNP-BC

There is a lack of consensus on the part of women’s healthcare providers and general confusion experienced by their patients about the role of prescription hormone therapy in women’s healthcare. For more than 60 years, estrogen therapy has been available to women who transition into menopause for relief of symptoms. During the 1980s, due to increased rates of endometrial cancer in women taking unopposed estrogen, medroxyprogesterone acetate (MPA) was added to conjugated equine estrogen (CEE). Unfortunately, this widely prescribed drug combination led to consequences that were not recognized until the early 2000s.

Cardiovascular disease is the leading cause of death in women 65 and older, and the second-leading cause of death in women 45 to 64. It is more common in menopausal than premenopausal women; however, the relationship between cardiovascular disease and diminishing estrogen levels remains unclear. In 2002, the Women’s Health Initiative (WHI) study, which compared estrogen-progestin to estrogen alone in menopausal women, was instituted for the purpose of improving overall health, preventing cardiac disease, and treating menopausal symptoms, was halted due to increased rates of invasive breast cancer.

Key words: complications of hormone replacement therapy, hormone therapy, menopause, menopause and evidence-based guidelines
This decision to stop the combination therapy arm of a major study prompted healthcare providers to reevaluate the practice of prescribing hormone therapy. The early results of the WHI study brought into question the safety of menopausal hormone therapy, and thousands of women stopped taking hormone therapy.2

■ Historic studies
Prior to 1998, there were many observational studies that demonstrated that postmenopausal women taking estrogen had lower rates of coronary heart disease (CHD) than women who were not taking estrogen.3

The Heart and Estrogen/progestin Replacement Study (HERS) was the first randomized controlled trial of placebo compared to the daily use of CEEs plus MPA. HERS studied 2,763 postmenopausal women (uterus intact) with known coronary disease at risk for nonfatal myocardial infarction to determine the rate of nonfatal myocardial infarction and deaths due to CHD. The women were younger than 80 years (average age 66.7 years), and average follow-up was 4.1 years.3

In 1999, The Postmenopausal Estrogen/Progestin Interventions (PEPI) trial was designed to determine the effect of different preparations of progestin had on cardiac risk factors that included levels of C-reactive protein, soluble E-selectin, von Willebrand factor (vWF), and factor VIIIc.4 PEPI was a 3-year, multicenter, randomized controlled trial. Five groups were studied: placebo versus CEE alone or CEE in combination with MPA (two groups) or micronized progesterone (see Five groups studied and frequency of administration in PEPI trial). A secondary outcome was to evaluate any changes to six common symptom groups associated with the menopause transition (cognitive/affective, weight/appetite, musculoskeletal, breast discomfort, anxiety, and vasomotor).3

The sample consisted of a subset of 383 women of the total 875 enrollees. Exclusion criteria included women who experienced menopause before age 44, menopause for less than 1 or more than 10 years prior to enrollment, hysterectomy within 2 months, body-mass index 40 kg/m2 or greater, or any contraindication to hormone use. Average age of subjects was 56.3 years, and the predominant race was White.

When the WHI study was published in 2002, it supported many of the findings found in the HERS and PEPI trials. The WHI was a randomized, double-blind, primary prevention trial of 16,608 postmenopausal women between 50 and 79 years (average age 63.3) with an intact uterus who enrolled between 1993 and 1998. Exclusion criteria consisted of any prior cancer (except nonmelanoma skin cancer), any medical condition limiting survival to less than 3 years, adherence and retention concerns (such as, alcohol abuse, dementia), or vasomotor symptoms.5,6 The primary outcome was CHD and secondary outcome was hip fracture; invasive breast cancer was the primary adverse outcome. Although the planned duration of the trial was 8.5 years, at 5.2 years of follow-up, the estrogen-progestin arm was stopped due to the excessive rate of invasive breast cancer.6 A second arm of the study, composed of 10,739 women (average age 63.6 years) with prior hysterectomy who received either CEE or placebo, continued for more than 6.8 years with initial results reported in 2004.7 (See Major studies on hormone replacement therapy between 1998 and 2002.)

■ Unofficial study outcomes: The significance of menopausal symptoms
These studies provided data that allowed for the exam of how hormone therapy affected vasomotor symptoms, cardiovascular issues, osteoporosis, and breast cancer.

Vasomotor symptoms
Hot flashes, or flushing, is the most identifiable effect of the menopause transition. As many as 75% of women experience these symptoms, which begin with a sudden sensation of heat centered on the face and chest, which rapidly becomes generalized.8 These flashes last between 2 and 4 minutes, and are frequently associated with perspiration. The most probable cause is the instability in the thermoregulatory center of the hypothalamus, related to the decreased levels of circulating estrogen and progesterone. This lability leads to sudden and transient vasodilation of the skin’s blood vessels, which causes the flushing sensation and rise in the temperature of the skin.9 The perspiration that follows a flush is a direct result of the body attempting to cool itself. While the exact physiologic cause of vasomotor instability is not completely understood, the effects of hot flashes on women range from imperceptible to debilitating.

Although PEPI examined symptom relief in six symptom groups, vasomotor symptoms was the only group that showed consistent improvement over placebo in all arms of the study at both year 1 and year 3. At year 1, risk reduction for all treatment arms was significant (P < 0.001); the reduction of

<table>
<thead>
<tr>
<th>Five groups studied and frequency of administration in PEPI trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>1. Placebo</td>
</tr>
<tr>
<td>2. CEE 0.625 mg</td>
</tr>
<tr>
<td>3. CEE 0.625 mg + MPA 10 mg</td>
</tr>
<tr>
<td>4. CEE 0.625 mg + MPA 2.5 mg</td>
</tr>
<tr>
<td>5. CEE 0.625 mg + micronized progesterone (MP) 200 mg</td>
</tr>
</tbody>
</table>
vasomotor symptoms was greatest (Odds ratio [OR], 0.17) in the CEE + MPA (group 4). CEE alone, while the least protective against placebo (OR, 0.28), still provided a significant reduction in hot flashes and other vasomotor symptoms. Odds ratio for the CEE and micronized progestin (MP) arm and the CEE and cyclic MPA were 0.21 and 0.23, respectively. By year 3 of follow-up, the reduction of vasomotor symptoms in the treatment arms was less dramatic (P < 0.03). Women taking CEE and micronized progesterone were least likely to exhibit symptoms (OR, 0.26); women taking CEE were most likely (OR, 0.53). CEE and continuous MPA was more protective (OR, 0.39) than CEE and cyclic MPA (OR, 0.43).

The WHI and HERS trials did not evaluate the effects of estrogen and progestin combinations on vasomotor symptoms. However, a Cochrane systematic review substantiated the findings of the PEPI trial in its review of published studies analyzing the effects of hormone therapy. In its evaluation of randomized controlled trials, the meta-analysis revealed that any dosage of hormone therapy reduced vasomotor symptom frequency by 75%.6 The comparison also showed a positive effect of hormone therapy on the severity of hot flashes, night sweats, and insomnia (OR, 0.13) when compared to placebo. The analysis of estrogen versus estrogen-progestin showed a greater reduction in severity of symptoms in the combined hormone therapy groups (OR, 0.10) versus estrogen only (OR, 0.35).6

Cardiovascular disease
Cardiovascular disease is the leading cause of death in women.9 Prior to the publication of the WHI and HERS, hormone therapy was purported to be universally cardioprotective. This protective effect was demonstrated in basic science research and studies with animal models, whereby the biologic evidence that estrogen can exert protective effects on the heart and blood vessels was seen. As women were prescribed hormone therapy with increasing regularity, observational studies supported this theory. When these data were evaluated in aggregate, a reduction in CHD events in women on hormone therapy (estrogen-progestin or estrogen alone) was seen.10

Coronary heart disease
When the HERS trial data were published, it was the first study that showed no risk reduction in myocardial infarction or death in women with known cardiac disease receiving CEE and MPA (relative risk [RR], 0.99). Risk was not reduced in spite of the intervention group having lower LDL and higher HDL. The data showed more events in the first year of the study than at years 4 or 5. These results were substantiated in the much larger WHI trial. The WHI showed an increased risk of CHD events in healthy women receiving CEE and MPA (hazard ratio [HR], 1.29). Interestingly, like HERS, risk was increased in year 1 (HR, 1.78), yet
Menopause and the hormone controversy: Clarification or confusion?

in the WHI study, year 5 carried the highest risk of CHD events (HR, 2.38). Based on the results of these two studies, it was concluded that hormone therapy should not be continued or initiated for the primary prevention of CHD.11

In 2004, almost 2 years after the release of the initial WHI trial, data were published from the CEE-only treatment arm of the study (this group of women was eligible to receive unopposed estrogen because they did not have a uterus). The CHD risk in this population was lower than in the group on CEE and MPA and almost equal to the risk of placebo (HR, 0.91). Risk in the CEE group was statistically significant in year 1 and trended down over time. Only those women 50 to 59 years of age demonstrated the cardioprotective effect seen in earlier observational studies (HR, 0.56).7

Venous thromboembolism

Venous thromboembolism (VTE) is a relatively common disease that affects women and includes pulmonary embolism or deep vein thrombosis (DVT). Hormone use at any point in the life span can increase the risk of VTE.6,12 When the HERS data were published, the risk for VTE in the group receiving hormone therapy was elevated and remained elevated over the course of follow-up (RR, 2.89). WHI data from the CEE and MPA arm demonstrated even higher risks for VTE in year 1 (HR, 3.60). The trend showed an initial lowering of risk and then an elevation at year 5 (HR, 2.26, 1.67, 1.84, and 2.49 for years 2 through 5, respectively). A subgroup of women with previous VTE was followed, and those taking hormone therapy appeared to have the highest risk of future VTE events (HR, 4.90). The CEE-only group also reported increased VTE risk in those taking hormone therapy, although not as great as the combined therapy trials (HR, 1.33). The risk for DVT and pulmonary embolism was higher (HR, 1.47) in the estrogen-only group versus combined hormone therapy group (HR, 2.07) at any dose.7

Stroke

Stroke is the third-leading cause of death for women, and although the number of deaths from stroke has declined substantially, the incidence of stroke may be increasing. Nonetheless, stroke remains the leading cause of functional impairment among both men and women.13 Stroke risk in women appears to be affected by estrogen exposure. Estrogens affect vascular endothelium and smooth muscle, inflammatory pathways, lipids, and other blood elements. In animal models, initiation of estrogen replacement at or after surgical removal of the ovaries showed less atherosclerosis or cerebral artery occlusion.14

The HERS data (women with coronary disease) indicated the increased stroke risk (HR, 1.13) in the hormone therapy group was not statistically significant and showed no clinical benefit with hormone therapy intervention for reduction of stroke.7 The WHI trial of otherwise healthy women on hormone therapy showed a greater risk for stroke (HR, 1.41) than the HERS trial of women with CHD. The absolute excess risk per 10,000 person-years was 8 strokes more in the women on CEE and MPA. Interestingly, the risk for stroke increased in years 2 through 5 (HR, 1.72, 1.79, 1.84, and 1.87, years 2 through 5, respectively) from relatively no risk in year 1 (HR, 0.95).7 The data from the CEE-only arm of the trial further supported increased stroke risk (HR, 1.39) with estrogen, resulting in 12 more strokes per year in absolute excess risk, per 10,000 person-years. Only those in the 50- to 59-year-old group demonstrated a risk similar to that of the placebo group (HR, 1.08), while the older age groups had a higher risk of stroke.7 A meta-analysis of 28 trials (including HERS and WHI) showed an overall increased risk of stroke of approximately 30% (RR, 1.29; CI [confidence interval], 1.13 to 1.47) due to hormone therapy (estrogen-progestin or estrogen alone).15

Osteoporosis

Most cases of osteoporosis occur in menopausal women, and the first indication of osteoporosis may be a fracture. Osteoporotic fractures are associated with significant morbidity and mortality, particularly in older women. For example, of those women who suffer a hip fracture, 25% will die within 1 year of complications related to the fracture, and 25% will require long-term care (50% of those women will have long-term loss of mobility).16 Within the first years of menopause, women who do not take hormone therapy have rapid bone loss associated with lower levels of circulating estrogen.17

The HERS study did not find a decrease in fracture risk with combined hormone therapy.14 In the PEPI trial, those in the placebo group lost an average of 1.8% of spine bone mineral density (BMD) and 1.7% of hip BMD by 36 months. Those taking hormone therapy gained BMD at hip (1.7%) and spine (3.5% to 5.0%). Furthermore, women taking CEE plus continuous MPA had greater increases in spine BMD (5%) than those on the other three regimens (average of 3.8%). In addition, older women, women with low BMD initially, and those who had no previous hormone therapy had greater gains in BMD overall.19

The WHI trial found that women taking combined hormonal therapy gained 3.7% in total hip BMD in 3 years compared to 0.14% in the placebo group.15 In women taking estrogen alone there was a 30% to 39% reduction in hip fractures compared to placebo (rates were 11 versus 17 per 10,000 person-years, respectively \(P \leq 0.011 \)). Vertebral BMD was not evaluated as an outcome in the WHI; however, the incidence of reported vertebral fractures was lower (11 versus 17 per 10,000 person-years, \(P \leq 0.02 \)), indicating a significant reduction in treatment versus placebo groups.
Researchers were concerned about lowering the dose of estrogen to reduce the risk of endometrial hyperplasia and breast cancer while preserving or increasing bone density. Because of the risk of endometrial hyperplasia and breast cancer, lowering the dose of estrogen has been proposed to attain the beneficial effects on bone density. For example, low doses (0.3 and 0.45 mg/day CEE) have been suggested as having a protective and dose-dependent effect related to BMD, with 0.625 mg/day of CEE having the greatest impact on BMD.22 Forms of estrogen other than CEE have been evaluated, including ultra-low doses of transdermal (0.014 mg/day) and oral micronized 17beta-estradiol (0.25 mg/day).23 Findings have shown that low doses confer protection to both hip and spine.23 Additionally, vaginal rings delivering systemic doses of 17beta-estradiol (0.05 and 0.1 mg/day) increased BMD to the spine (2.7% and 3.3%, respectively \(P < 0.001 \)) from baseline and total hip BMD (1.7% and 1.8%, respectively \(P < 0.001 \)). This dose effect was not supported by the results found when the low-dose vaginal ring currently available (0.0075 mg/day) was used. This low-dose vaginal ring had no effect on lumbar spine BMD and decreased hip BMD by 1.2%.23

Studies indicate that hormone therapy significantly reduces the risk of fracture in older women; however, if treatment is discontinued, in 5 years the risk of fracture returns to the level of someone who has never taken hormone therapy.14

Breast cancer
Cancer is the second-leading cause of death for women in the United States.15 The WHI trial of CEE + MPA was halted when the risk of invasive breast cancer was found to be increased compared to placebo. Follow-up analysis found that the total number of breast cancers and invasive breast cancers were increased 53% in those taking CEE + MPA.5 Tumors were also larger, and at a more advanced stage at diagnosis when compared to placebo. The number of abnormal mammograms was also significantly greater in the treatment group versus placebo, suggesting possible stimulation of the growths or changes in breast tissue that may obscure the diagnosis of early breast cancers.23 An increased risk of invasive ductal carcinoma was found in women using combined hormone therapy for longer durations. Between 5 and 14.9 years, there was a 1.5-fold increase (95% CI, 1.0 to 2.3); ≥15 years, there was a 1.6-fold increase (95% CI, 1.0 to 2.6). There was also a 3.7-fold increase in risk of invasive lobular carcinoma between 5 and 14.9 years (95% CI, 2.0 to 6.6), and a 2.6-fold risk (95% CI, 1.3 to 5.3) for those taking estrogen-progestin for more than 15 years.3 Following the release of the 2002 WHI report, use of hormone therapy decreased substantially in the United States and Europe, resulting in a 43% reduction in the incidence of breast cancer from 2002 through 2005, further demonstrating a relationship between the incidence of breast cancer and combined hormone therapy.25,26

Women taking unopposed estrogen, even for 25 years or longer, had no increased risk of breast cancer.1 Other studies had the similar finding that unopposed CEE did not increase the risk of breast cancer, and could decrease the risk of early-stage disease and ductal carcinomas.27 Although there was no increase in risk for breast cancer, one study found that women taking unopposed estrogen had more than a 2-fold increase in the risk of benign proliferative breast disease.28 There is some suggestion that proliferative breast disease may be a precursor to breast cancer, although more studies are needed.28

The addition of progestin to estrogen has an adverse impact on breast cancer and is more detrimental overall than estrogen alone.3,30 Eleven years of follow-up in the WHI further substantiates that CEE + MPA is associated with the greater incidence of breast cancer and the more common finding of node-positive breast cancer. Mortality from breast cancer appears to be increased with combined hormone therapy.25

Summary of 2010 position statements and implications for practice

The Endocrine Society, a nationwide advocacy and educational organization founded in 1917, concludes there is high-quality evidence to demonstrate a significant reduction in the frequency and severity of hot flashes with hormone therapy, as well as relief with lower doses of estrogen.14 The North American Menopause Society (NAMS), a nonprofit organization founded in 1989, also holds the position that estrogen therapy with or without a progestogen is the most effective treatment for menopause-related symptoms and their consequences.31

The Endocrine Society concluded that although observational studies suggested that hormone therapy may prevent CHD and atherosclerosis, this was not evident in the WHI study with older women initiating hormone therapy more than 10 years after menopause. The risk for CHD increased in this population indicating a lack of benefit for prevention of heart disease. The Society suggests further research in the 50 to 59 year age group is needed to better understand the harms and benefits, given that this is the demographic for hormone therapy.14 NAMS concludes that hormone therapy cannot be recommended as the sole or primary indication for cardiovascular risk reduction in any women, regardless of age. Women ages 50 to 59 or within 10 years of menopause onset using hormone therapy do not appear at greater risk for CHD events.

According to the Endocrine Society, there is high-quality evidence to support the 2-fold increased risk of VTE with hormone therapy use. Current evidence suggests that women with a prior history of VTE and those with factor V Leiden may be at greatest risk for future VTE with hormone therapy use.14 NAMS concludes that current observational studies
Menopause and the hormone controversy: Clarification or confusion?

The Nurse Practitioner Vol. 36, No. 7 www.tnpj.com

showing no increased risk with transdermal delivery of estrogens warrant further study in randomized controlled trials.31

According to the Endocrine Society, a one-third increase in risk of stroke in healthy postmenopausal women is supported with moderate-quality evidence. There is moderate-quality evidence to suggest no reduction in the incidence in older women with vascular disease present. There is only low-quality evidence to demonstrate that lower-dose estrogen therapy will not increase stroke risk.14 NAMS concludes that evidence does not support hormone therapy as effective for risk reduction of recurrent stroke in those with established cardiovascular disease or for prevention of first stroke. NAMS states that hormone therapy cannot be recommended for primary or secondary prevention of stroke.31

There is high-quality evidence, according to the Endocrine Society, that estrogen or estrogen-progestin is as effective as bisphosphonates in preventing early postmenopausal bone loss and augmenting bone mass in late postmenopause. There is sufficient evidence from randomized controlled trials that hormone therapy reduces postmenopausal osteoporotic fractures, hip and vertebral fractures even in women who do not have osteoporosis.14 Hormone therapy is not recognized as a treatment for osteoporosis, but many systemic products are FDA approved and available for the prevention of osteoporosis. NAMS recommends extended use of hormone therapy as an option for women who have reduction of bone mass, regardless of menopausal symptoms.39 Additionally, it recommends hormone therapy under the following conditions: for prevention of further bone loss and/or reduction of osteoporotic fracture, when alternate therapies are not appropriate or cause significant adverse effects, or when the benefits of extended use outweigh the risks.31

The Endocrine Society’s conclusions regarding breast cancer vary: High-quality evidence indicates that mammographic density of breast tissue increases with use of estrogen only and estrogen-progestin. Moderate-quality evidence suggests that estrogen alone for less than 5 years may reduce the risk of breast cancer in patients starting therapy many years after the onset of menopause. Estrogens increase the risk of breast cancer after more than 5 years of use, while estrogen-progestin increases the risk of invasive breast cancer within 3 to 5 years of initiation and continues to rise with duration of therapy. If estrogen alone or estrogen-progestin is stopped, the risk of breast cancer returns to approximately that of nonusers by 3 to 5 years.13

Conclusions by NAMS differs, stating that estrogen-progestin increases the risk of a diagnosis of breast cancer 3 to 5 years beyond initiation, but data are unclear on the effects of continuous or sequential use of progestogens. Likewise, the form of progestogens may have an influence on risk for breast cancer. Early studies indicate that micronized progesterone with estrogen may not be associated with an increased risk if used up to 5 years, but more research is required. Proliferation of breast tissue and mammographic density are related more to estrogen-progestin, impeding diagnostic interpretation more so than estrogen alone. The estrogen-alone arm of WHI showed no increased risk of breast cancer after an average of 7.1 years of use.31

Summary

Further studies are warranted to identify the lowest effective dose, the optimal form of estrogen, and the ideal method of drug delivery in reducing symptoms. Work is underway to evaluate transdermal forms of drug delivery, with preliminary reports of favorable results on the outcomes of stroke and VTEs, while alleviating hot flashes and symptoms.12,32

A thorough risk assessment is necessary to identify the significant risks and benefits of hormone therapy for each patient. Presenting these risks and benefits to patients allows the NP to assist them in making a knowledgeable decision. NPs need to continue to use clinical judgment based on the available science, to evaluate whether hormone therapy is appropriate for each patient, whether short or long term.

REFERENCES

Jane H. Kass-Wolff is an assistant professor at University of Colorado Anschutz Medical Campus, College of Nursing, Division of Women and Families, Aurora, Co. Jennifer E. Fisher is an assistant professor at the University of Colorado Anschutz Medical Campus School of Medicine, Department of Family Medicine.

The authors have disclosed that they have no financial relationship related to this article.

DOI: 10.1097/01.NPR.0000398779.49929.40

For more than 85 additional continuing education articles related to advanced nursing practice topics, go to NursingCenter.com/CE.

CE Connection

Earn CE credit online: Go to http://www.nursingcenter.com/CE/NP and receive a certificate within minutes.

INSTRUCTIONS

Menopause and the hormone controversy: Clarification or confusion?

TEST INSTRUCTIONS

- To take the test online, go to our secure website at http://www.nursingcenter.com/CE/NP.
- On the print form, record your answers in the test answer section of the CE enrollment form on page 30. Each question has only one correct answer. You may make copies of these forms.
- Complete the registration information and course evaluation. Mail the completed form and registration fee of $24.95 to: Lippincott Williams & Wilkins, CE Group, 2710 Yorktowne Blvd., Brick, NJ 08723. We will mail your certificate in 4 to 6 weeks. For faster service, include a fax number and we will fax your certificate within 2 business days of receiving your enrollment form.
- You will receive your CE certificate of earned contact hours and an answer key to review your results. There is no minimum passing grade.
- Registration deadline is July 31, 2013.

DISCOUNTS and CUSTOMER SERVICE

Send two or more tests in any nursing journal published by Lippincott Williams & Wilkins together and deduct $0.95 from the price of each test.
- We also offer CE accounts for hospitals and other healthcare facilities on nursingcenter.com. Call 1-800-787-8985 for details.

PROVIDER ACCREDITATION

Lippincott Williams & Wilkins, publisher of The Nurse Practitioner journal, will award 2.6 contact hours for this continuing nursing education activity.

Lippincott Williams & Wilkins is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center’s Commission on Accreditation.

This activity is also provider approved by the California Board of Registered Nursing, Provider Number CEP 11749 for 2.6 contact hours. Lippincott Williams & Wilkins is also an approved provider of continuing nursing education by the District of Columbia and Florida #FBN2454.

Your certificate is valid in all states.

The ANCC’s accreditation status of Lippincott Williams & Wilkins Department of Continuing Education refers only to its continuing nursing educational activities and does not imply Commission on Accreditation approval or endorsement of any commercial product.

www.tnpj.com The Nurse Practitioner • July 2011 29